No. of vertices | Graph | Intersection Array |
$15$ | $J(6,2)$ | $\{8,3;1,4\}$ |
$17$ | $\text{Paley graph }P_{17}$ | $\{8,4;1,4\}$ |
$18$ | $K_{9,9}-I$ | $\{8,7,1;1,7,8\}$ |
$25$ | $H(2,5)$ | $\{8,4;1,2\}$ |
$27$ | $GQ(2,4)\text{ minus spread}$ | $\{8,6,1;1,3,8\}$ |
$30$ | $\text{Incidence graph of complement of }PG(3,2)$ | $\{8,7,4;1,4,8\}$ |
$30$ | $\text{Incidence graphs of }(15,8,4)\text{-designs }(N=4)$ | $\{8,7,4;1,4,8\}$ |
$32$ | $\text{Hadamard graph on 32 vertices}$ | $\{8,7,4,1;1,4,7,8\}$ |
$63$ | $\text{Symplectic 7-cover of }K_9$ | $\{8,6,1;1,1,8\}$ |
$64$ | $\text{Incidence graph of }\mathrm{STD}_2[8;4]$ | $\{8,7,6,1;1,2,7,8\}$ |
$81$ | $H(4,3)$ | $\{8,6,4,2;1,2,3,4\}$ |
$105$ | $\text{Flag graph of PG(2,4)}$ | $\{8,4,4;1,1,2\}$ |
$114$ | $\text{Incidence graph of }PG(2,7)$ | $\{8,7,7;1,1,8\}$ |
$128$ | $\text{Folded 8-cube}$ | $\{8,7,6,5;1,2,3,8\}$ |
$256$ | $\text{8-cube }Q_8 \cong H(8,2)$ | $\{8,7,6,5,4,3,2,1;1,2,3,4,5,6,7,8\}$ |
Back to: Graphs by valency
Last updated: 7 June 2017