$\text{Distance-regular graphs of valency 8}$

No. of verticesGraphIntersection Array
$15$$J(6,2)$$\{8,3;1,4\}$
$17$$\text{Paley graph }P_{17}$$\{8,4;1,4\}$
$18$$K_{9,9}-I$$\{8,7,1;1,7,8\}$
$25$$H(2,5)$$\{8,4;1,2\}$
$27$$GQ(2,4)\text{ minus spread}$$\{8,6,1;1,3,8\}$
$30$$\text{Incidence graph of complement of }PG(3,2)$$\{8,7,4;1,4,8\}$
$30$$\text{Incidence graphs of }(15,8,4)\text{-designs }(N=4)$$\{8,7,4;1,4,8\}$
$32$$\text{Hadamard graph on 32 vertices}$$\{8,7,4,1;1,4,7,8\}$
$63$$\text{Symplectic 7-cover of }K_9$$\{8,6,1;1,1,8\}$
$64$$\text{Incidence graph of }\mathrm{STD}_2[8;4]$$\{8,7,6,1;1,2,7,8\}$
$81$$H(4,3)$$\{8,6,4,2;1,2,3,4\}$
$105$$\text{Flag graph of PG(2,4)}$$\{8,4,4;1,1,2\}$
$114$$\text{Incidence graph of }PG(2,7)$$\{8,7,7;1,1,8\}$
$128$$\text{Folded 8-cube}$$\{8,7,6,5;1,2,3,8\}$
$256$$\text{8-cube }Q_8 \cong H(8,2)$$\{8,7,6,5,4,3,2,1;1,2,3,4,5,6,7,8\}$

Back to: Graphs by valency
Last updated: 7 June 2017