$\text{Distance-regular graphs of valency 5}$

No. of verticesGraphIntersection Array
$12$$K_{6,6}-I$$\{5,4,1;1,4,5\}$
$12$$\text{Icosahedron}$$\{5,2,1;1,2,5\}$
$16$$\text{Clebsch graph}$$\{5,4;1,2\}$
$22$$\text{Incidence graph of biplane}$$\{5,4,3;1,2,5\}$
$32$$\text{5-cube }Q_5 \cong H(5,2)$$\{5,4,3,2,1;1,2,3,4,5\}$
$32$$\text{Armanios-Wells graph}$$\{5,4,1,1;1,1,4,5\}$
$36$$\text{Sylvester graph}$$\{5,4,2;1,1,4\}$
$42$$\text{Incidence graph of PG(2,4)}$$\{5,4,4;1,1,5\}$
$50$$\text{Incidence graph of }AG(2,5) \text{ minus a parallel class}$$\{5,4,4,1;1,1,4,5\}$
$126$$\text{Odd graph }O_5$$\{5,4,4,3;1,1,2,2\}$
$170$$\text{Incidence graph of }GQ(4,4)$$\{5,4,4,4;1,1,1,5\}$
$252$$\text{Doubled Odd Graph }D(O_5)$$\{5,4,4,3,3,2,2,1,1;1,1,2,2,3,3,4,4,5\}$

Back to: Graphs by valency
Last updated: 21 February 2017