$\text{Distance-regular graphs of valency 12}$

No. of verticesGraphIntersection Array
$25$$\text{Paley graph }P_{25}$$\{12,6;1,6\}$
$25$$\text{Paulus graphs}$$\{12,6;1,6\}$
$26$$K_{13,13}-I$$\{12,11,1;1,11,12\}$
$28$$J(8,2)$$\{12,5;1,4\}$
$35$$J(7,3)$$\{12,6,2;1,4,9\}$
$40$$\text{Point graphs of }GQ(3,3) \text{ and its dual}$$\{12,9;1,4\}$
$45$$\text{Point graph of }GQ(4,2)$$\{12,8;1,3\}$
$48$$\text{Hadamard graph on 48 vertices}$$\{12,11,6,1;1,6,11,12\}$
$49$$H(2,7)$$\{12,6;1,2\}$
$68$$\text{Doro graph}$$\{12,10,3;1,3,8\}$
$72$$\text{Suetake graph}$$\{12,11,8,1;1,4,11,12\}$
$125$$H(3,5)$$\{12,8,4;1,2,3\}$
$175$$\text{Line graph of Hoffman-Singleton graph}$$\{12,6,5;1,1,4\}$
$208$$\text{Unitary graph from P} \Gamma \text{U(3,4)}$$\{12,10,5;1,1,8\}$
$256$$H(4,4)$$\{12,9,6,3;1,2,3,4\}$
$266$$\text{Incidence graph of }PG(2,11)$$\{12,11,11;1,1,12\}$
$364$$\text{Point graph of }GH(3,3)$$\{12,9,9;1,1,4\}$

Back to: Graphs by valency
Last updated: 7 June 2017