No. of vertices | Graph | Intersection Array |
$25$ | $\text{Paley graph }P_{25}$ | $\{12,6;1,6\}$ |
$25$ | $\text{Paulus graphs}$ | $\{12,6;1,6\}$ |
$26$ | $K_{13,13}-I$ | $\{12,11,1;1,11,12\}$ |
$28$ | $J(8,2)$ | $\{12,5;1,4\}$ |
$35$ | $J(7,3)$ | $\{12,6,2;1,4,9\}$ |
$40$ | $\text{Point graphs of }GQ(3,3) \text{ and its dual}$ | $\{12,9;1,4\}$ |
$45$ | $\text{Point graph of }GQ(4,2)$ | $\{12,8;1,3\}$ |
$48$ | $\text{Hadamard graph on 48 vertices}$ | $\{12,11,6,1;1,6,11,12\}$ |
$49$ | $H(2,7)$ | $\{12,6;1,2\}$ |
$68$ | $\text{Doro graph}$ | $\{12,10,3;1,3,8\}$ |
$72$ | $\text{Suetake graph}$ | $\{12,11,8,1;1,4,11,12\}$ |
$125$ | $H(3,5)$ | $\{12,8,4;1,2,3\}$ |
$175$ | $\text{Line graph of Hoffman-Singleton graph}$ | $\{12,6,5;1,1,4\}$ |
$208$ | $\text{Unitary graph from P} \Gamma \text{U(3,4)}$ | $\{12,10,5;1,1,8\}$ |
$256$ | $H(4,4)$ | $\{12,9,6,3;1,2,3,4\}$ |
$266$ | $\text{Incidence graph of }PG(2,11)$ | $\{12,11,11;1,1,12\}$ |
$364$ | $\text{Point graph of }GH(3,3)$ | $\{12,9,9;1,1,4\}$ |
Back to: Graphs by valency
Last updated: 7 June 2017