## $\text{Distance-regular graphs of valency 12}$

 No. of vertices Graph Intersection Array $25$ $\text{Paley graph }P_{25}$ $\{12,6;1,6\}$ $25$ $\text{Paulus graphs}$ $\{12,6;1,6\}$ $26$ $K_{13,13}-I$ $\{12,11,1;1,11,12\}$ $28$ $J(8,2)$ $\{12,5;1,4\}$ $35$ $J(7,3)$ $\{12,6,2;1,4,9\}$ $40$ $\text{Point graphs of }GQ(3,3) \text{ and its dual}$ $\{12,9;1,4\}$ $45$ $\text{Point graph of }GQ(4,2)$ $\{12,8;1,3\}$ $48$ $\text{Hadamard graph on 48 vertices}$ $\{12,11,6,1;1,6,11,12\}$ $49$ $H(2,7)$ $\{12,6;1,2\}$ $68$ $\text{Doro graph}$ $\{12,10,3;1,3,8\}$ $72$ $\text{Suetake graph}$ $\{12,11,8,1;1,4,11,12\}$ $125$ $H(3,5)$ $\{12,8,4;1,2,3\}$ $175$ $\text{Line graph of Hoffman-Singleton graph}$ $\{12,6,5;1,1,4\}$ $208$ $\text{Unitary graph from P} \Gamma \text{U(3,4)}$ $\{12,10,5;1,1,8\}$ $256$ $H(4,4)$ $\{12,9,6,3;1,2,3,4\}$ $266$ $\text{Incidence graph of }PG(2,11)$ $\{12,11,11;1,1,12\}$ $364$ $\text{Point graph of }GH(3,3)$ $\{12,9,9;1,1,4\}$

Back to: Graphs by valency
Last updated: 7 June 2017