$\text{Distance-regular graphs with more than 200 vertices}$

GraphNo. of verticesDiameter
$\text{Unitary graph from P}\Gamma\text{U}(3,4)$$208$$3$
$J(10,4)$$210$$4$
$H(3,6)$$216$$3$
$\text{Cameron graph}$$231$$2$
$H(5,3)$$243$$5$
$\text{Berlekamp-van Lint-Seidel graph}$$243$$2$
$J(10,5)$$252$$5$
$\text{Doubled Odd graph }D(O_5)$$252$$9$
$\text{8-cube }Q_8 \cong H(8,2)$$256$$8$
$\text{Folded 9-cube}$$256$$4$
$\text{Halved 9-cube}$$256$$4$
$H(4,4)$$256$$4$
$\text{Livingstone graph}$$266$$4$
$\text{Incidence graph of }PG(2,11)$$266$$3$
$\text{McLaughlin graph}$$275$$2$
$\text{Unitals in }PG(2,4)$$280$$4$
$\text{Leonard graph}$$288$$4$
$\text{Incidence graphs of Leonard semibiplanes}$$288$$3$
$\text{Hall--Janko/Cohen--Tits near octagon}$$315$$4$
$\text{Doubly truncated Witt graph}$$330$$4$
$H(3,7)$$343$$3$
$\text{Taylor graphs from Higman-Sims group (2 graphs)}$$352$$3$
$\text{Point graph of }GH(3,3)$$364$$3$
$\mathrm{G}_2(4)\text{ graph}$$416$$2$
$\text{Odd graph }O_6$$462$$5$
$\text{Truncated Witt graph}$$506$$3$
$\text{Coset graph of doubly truncated binary Golay code}$$512$$3$
$\text{9-cube }Q_9 \cong H(9,2)$$512$$9$
$\text{Folded 10-cube}$$512$$5$
$\text{Halved 10-cube}$$512$$5$
$\text{Unitary graph from P}\Gamma\text{U}(3,5)$$525$$3$
$\text{Taylor graphs from }Co_3 \text{(2 graphs)}$$552$$3$
$\text{Grassmann graph }J_2(6,2)$$651$$2$
$H(4,5)$$625$$4$
$\text{Incidence graph of }GH(3,3)$$728$$6$
$\text{Coset graph of extended ternary Golay code}$$729$$3$
$\text{Witt graph}$$759$$3$
$\text{Ivanov-Ivanov-Faradjev graph}$$990$$8$
$\text{Coset graph of truncated binary Golay code}$$1024$$3$
$\text{Distance-2 graph of coset graph of truncated binary Golay code}$$1024$$3$
$\text{10-cube }Q_{10} \cong H(10,2)$$1024$$10$
$H(4,6)$$1296$$4$
$\text{Grassmann graph }J_2(6,3)$$1395$$3$
$\text{Odd graph }O_7$$1416$$6$

Back to: Graphs by number of vertices
Last updated: 4 August 2017