No. of vertices | Intersection Array | Graph |
$16$ | $\{4,3,2,1; 1,2,3,4\}$ | $\text{4-cube }Q_4 \cong H(4,2)$ |
$18$ | $\{3,2,2,1;1,1,2,3\}$ | $\text{Pappus graph}$ |
$28$ | $\{3,2,2,1;1,1,1,2\}$ | $\text{Coxeter graph}$ |
$30$ | $\{3,2,2,2;1,1,1,3\}$ | $\text{Tutte's 8-cage}$ |
$32$ | $\{4,3,3,1;1,1,3,4\}$ | $\text{Incidence graph of }AG(2,4) \text{ minus a parallel class}$ |
$32$ | $\{5,4,1,1;1,1,4,5\}$ | $\text{Armanios-Wells graph}$ |
$32$ | $\{8,7,4,1;1,4,7,8\}$ | $\text{Hadamard graph on 32 vertices}$ |
$36$ | $\{6,5,4,1;1,2,5,6\}$ | $\text{Hexacode graph}$ |
$45$ | $\{4,2,2,2;1,1,1,2\}$ | $\text{Line graph of Tutte's 8-cage}$ |
$45$ | $\{6,4,2,1;1,1,4,6\}$ | $\text{Halved Foster graph}$ |
$48$ | $\{12,11,6,1;1,6,11,12\}$ | $\text{Hadamard graph on 48 vertices}$ |
$50$ | $\{5,4,4,1;1,1,4,5\}$ | $\text{Incidence graph of }AG(2,5)\text{ minus a parallel class }$ |
$54$ | $\{9,8,6,1;1,3,8,9\}$ | $\text{Incidence graph of }\mathrm{STD}_3[9;3]$ |
$63$ | $\{10,6,4,1;1,2,6,10\}$ | $\text{Conway-Smith graph}$ |
$64$ | $\{8,7,6,1;1,2,7,8\}$ | $\text{Incidence graph of }\mathrm{STD}_2[8;4]$ |
$72$ | $\{12,11,8,1;1,4,11,12\}$ | $\text{Suetake graph}$ |
$80$ | $\{4,3,3,3;1,1,1,4\}$ | $\text{Incidence graph of }GQ(3,3)$ |
$81$ | $\{8,6,4,2;1,2,3,4\}$ | $H(4,3)$ |
$98$ | $\{7,6,6,1;1,1,6,7\}$ | $\text{Incidence graph of }AG(2,7) \text{ minus a parallel class}$ |
$100$ | $\{15,14,10,3;1,5,12,15\}$ | $\text{Cocliques in Hoffman-Singleton graph}$ |
$126$ | $\{5,4,4,3;1,1,2,2\}$ | $\text{Odd graph }O_5$ |
$128$ | $\{8,7,7,1;1,1,7,8\}$ | $\text{Incidence graph of }AG(2,8) \text{ minus a parallel class}$ |
$128$ | $\{8,7,6,5;1,2,3,8\}$ | $\text{Folded 8-cube}$ |
$128$ | $\{28,15,6,1;1,6,15,28\}$ | $\text{Halved 8-cube}$ |
$162$ | $\{6,5,5,4;1,1,2,6\}$ | $\text{van Lint-Schrijver graph}$ |
$162$ | $\{9,8,8,1;1,1,8,9\}$ | $\text{Incidence graph of }AG(2,9) \text{ minus a parallel class}$ |
$170$ | $\{5,4,4,4;1,1,1,5\}$ | $\text{Incidence graph of }GQ(4,4)$ |
$256$ | $\{12,9,6,3;1,2,3,4\}$ | $H(4,4)$ |
$256$ | $\{9,8,7,6;1,2,3,4\}$ | $\text{Folded 9-cube}$ |
$256$ | $\{36,21,10,3;1,6,15,28\}$ | $\text{Halved 9-cube}$ |
$266$ | $\{11,10,6,1;1,1,5,11\}$ | $\text{Livingstone graph}$ |
$280$ | $\{9,8,6,3;1,1,3,8\}$ | $\text{Unitals in }PG(2,4)$ |
$288$ | $\{12,11,10,7;1,2,5,12\}$ | $\text{Leonard graph}$ |
$315$ | $\{10,8,8,2;1,1,4,5\}$ | $\text{Hall--Janko/Cohen--Tits near octagon from }J_2.2$ |
$315$ | $\{32,27,8,1;1,4,27,32\}$ | $\text{Soicher's } 3^{\text{rd}}\text{ graph}$ |
$330$ | $\{7,6,4,4;1,1,1,6\}$ | $\text{Doubly truncated Witt graph}$ |
$378$ | $\{45,32,12,1;1,6,32,45\}$ | $\text{Antipodal 3-cover of Zara graph}$ |
$486$ | $\{45,44,36,5;1,9,40,45\}$ | $\text{Koolen-Riebeek graph}$ |
$486$ | $\{56,45,16,1;1,8,45,56\}$ | $\text{Soicher's } 2^{\text{nd}}\text{ graph}$ |
$1134$ | $\{117,80,24,1;1,12,80,117\}$ | $\text{Norton-Smith graph}$ |
$1344$ | $\{176,135,29,1;1,24,135,176\}$ | $\text{Meixner double-cover of }U_6(2) \text{ graph}$ |
$1755$ | $\{\}$ | $\text{Ree-Tits Generalized Octagon, }GO(2,4)$ |
$2688$ | $\{176,135,36,1;1,12,135,176\}$ | $\text{Meixner quadruple cover of }U_6(2) \text{ graph}$ |
$5346$ | $\{416,315,64,1;1,32,315,416\}$ | $\text{Soicher's } 1^{\text{st}}\text{ graph}$ |