## $\text{Distance-regular graphs from 51 to 100 vertices}$

 Graph No. of vertices Diameter $\text{Symplectic 3-cover of }K_{17}$ $51$ $3$ $\text{Flag graph of }PG(2,3)$ $52$ $3$ $\text{Paley graph }P_{53}$ $53$ $2$ $\text{Incidence graph of }\mathrm{STD}_3[9;3]$ $54$ $4$ $\text{Gosset graph}$ $56$ $3$ $\text{Distance-2 graph of Gosset graph}$ $56$ $3$ $\text{Gewirtz graph}$ $56$ $2$ $J(8,3)$ $56$ $3$ $\text{Perkel graph}$ $57$ $3$ $\text{Symplectic 5-cover of }K_{12}$ $60$ $3$ $\text{Paley graph }P_{61}$ $61$ $2$ $\text{Incidence graph of }PG(2,5)$ $62$ $3$ $\text{Incidence graph of }PG(4,2)$ $62$ $3$ $\text{Point graphs of }GH(2,2) \text{ and its dual}$ $63$ $3$ $\text{Symplectic 7-cover of }K_9$ $63$ $3$ $\text{Conway-Smith graph}$ $63$ $4$ $\text{Incidence graph of }\mathrm{STD}_2[8;4]$ $64$ $4$ $\text{6-cube }Q_6 \cong H(6,2)$ $64$ $6$ $H(3,4)$ $64$ $3$ $H(2,8)$ $64$ $2$ $\text{Folded 7-cube}$ $64$ $3$ $\text{Halved 7-cube}$ $64$ $3$ $\text{Hall graph}$ $65$ $3$ $\text{Doro graph}$ $68$ $3$ $J(8,4)$ $70$ $4$ $\text{Doubled Odd graph }D(O_4)$ $70$ $7$ $\text{Suetake graph}$ $72$ $4$ $\text{Paley graph }P_{73}$ $73$ $2$ $M_{22} \text{ graph}$ $77$ $2$ $\text{Incidence graph of }GQ(3,3)$ $80$ $4$ $\text{Incidence graph of }PG(3,3)$ $80$ $3$ $\text{Paley graph }P_{81}$ $81$ $2$ $\text{Brouwer-Haemers graph}$ $81$ $2$ $H(2,9)$ $81$ $2$ $H(4,3)$ $81$ $4$ $J(9,3)$ $84$ $3$ $\text{Symplectic 5-cover of }K_{17}$ $85$ $3$ $\text{Paley graph }P_{89}$ $89$ $2$ $\text{Foster graph}$ $90$ $8$ $\text{Paley graph }P_{97}$ $97$ $2$ $\text{Incidence graph of }AG(2,7) \text{ minus a parallel class}$ $98$ $4$ $H(2,10)$ $100$ $2$ $\text{Higman-Sims graph}$ $100$ $2$ $\text{Hall-Janko graph}$ $100$ $2$ $\text{Cocliques in Hoffman-Singleton graph}$ $100$ $4$ $\text{Doubled Hoffman-Singleton graph}$ $100$ $5$

Back to: Graphs by number of vertices
Last updated: 20 February 2019