$\text{Distance-regular graphs from 51 to 100 vertices}$

GraphNo. of verticesDiameter
$\text{Symplectic 3-cover of }K_{17}$$51$$3$
$\text{Flag graph of }PG(2,3)$$52$$3$
$\text{Paley graph }P_{53}$$53$$2$
$\text{Incidence graph of }\mathrm{STD}_3[9;3]$$54$$4$
$\text{Gosset graph}$$56$$3$
$\text{Distance-2 graph of Gosset graph}$$56$$3$
$\text{Gewirtz graph}$$56$$2$
$J(8,3)$$56$$3$
$\text{Perkel graph}$$57$$3$
$\text{Symplectic 5-cover of }K_{12}$$60$$3$
$\text{Paley graph }P_{61}$$61$$2$
$\text{Incidence graph of }PG(2,5)$$62$$3$
$\text{Incidence graph of }PG(4,2)$$62$$3$
$\text{Point graphs of }GH(2,2) \text{ and its dual}$$63$$3$
$\text{Symplectic 7-cover of }K_9$$63$$3$
$\text{Conway-Smith graph}$$63$$4$
$\text{Incidence graph of }\mathrm{STD}_2[8;4]$$64$$4$
$\text{6-cube }Q_6 \cong H(6,2)$$64$$6$
$H(3,4)$$64$$3$
$H(2,8)$$64$$2$
$\text{Folded 7-cube}$$64$$3$
$\text{Halved 7-cube}$$64$$3$
$\text{Hall graph}$$65$$3$
$\text{Doro graph}$$68$$3$
$J(8,4)$$70$$4$
$\text{Doubled Odd graph }D(O_4)$$70$$7$
$\text{Suetake graph}$$72$$4$
$\text{Paley graph }P_{73}$$73$$2$
$M_{22} \text{ graph}$$77$$2$
$\text{Incidence graph of }GQ(3,3)$$80$$4$
$\text{Incidence graph of }PG(3,3)$$80$$3$
$\text{Paley graph }P_{81}$$81$$2$
$\text{Brouwer-Haemers graph}$$81$$2$
$H(2,9)$$81$$2$
$H(4,3)$$81$$4$
$J(9,3)$$84$$3$
$\text{Symplectic 5-cover of }K_{17}$$85$$3$
$\text{Paley graph }P_{89}$$89$$2$
$\text{Foster graph}$$90$$8$
$\text{Paley graph }P_{97}$$97$$2$
$\text{Incidence graph of }AG(2,7) \text{ minus a parallel class}$$98$$4$
$H(2,10)$$100$$2$
$\text{Higman-Sims graph}$$100$$2$
$\text{Hall-Janko graph}$$100$$2$
$\text{Cocliques in Hoffman-Singleton graph}$$100$$4$
$\text{Doubled Hoffman-Singleton graph}$$100$$5$

Back to: Graphs by number of vertices
Last updated: 20 February 2019