$\text{Distance-regular graphs from 101 to 150 vertices}$

GraphNo. of verticesDiameter
$\text{Paley graph }P_{101}$$101$$2$
$\text{Biggs-Smith graph}$$102$$7$
$\text{Flag graph of }PG(2,4)$$105$$3$
$\text{Goethals-Seidel graph}$$105$$2$
$1^{\text{st}} \text{ subconstituent of McLaughlin graph}$$112$$2$
$\text{Incidence graph of }PG(2,7)$$114$$3$
$J(10,3)$$120$$3$
$H(3,5)$$125$$3$
$J(9,4)$$126$$4$
$\text{Odd graph }O_5$$126$$4$
$\text{Tutte's 12-cage}$$126$$6$
$\text{Zara graph}$$126$$2$
$\text{7-cube }Q_7 \cong H(7,2)$$128$$7$
$\text{Folded 8-cube}$$128$$4$
$\text{Halved 8-cube}$$128$$4$
$\text{Incidence graph of }AG(2,8) \text{ minus a parallel class}$$128$$4$
$\text{Grassmann graph }J_3(4,2)$$130$$2$
$\text{Halved Leonard graph}$$144$$2$
$\text{Incidence graph of }PG(2,8)$$146$$3$

Back to: Graphs by number of vertices
Last updated: 23 February 2019