Graph | No. of vertices | Diameter |

$\text{Paley graph }P_{101}$ | $101$ | $2$ |

$\text{Biggs-Smith graph}$ | $102$ | $7$ |

$\text{Flag graph of }PG(2,4)$ | $105$ | $3$ |

$\text{Goethals-Seidel graph}$ | $105$ | $2$ |

$1^{\text{st}} \text{ subconstituent of McLaughlin graph}$ | $112$ | $2$ |

$\text{Incidence graph of }PG(2,7)$ | $114$ | $3$ |

$J(10,3)$ | $120$ | $3$ |

$H(3,5)$ | $125$ | $3$ |

$J(9,4)$ | $126$ | $4$ |

$\text{Odd graph }O_5$ | $126$ | $4$ |

$\text{Tutte's 12-cage}$ | $126$ | $6$ |

$\text{Zara graph}$ | $126$ | $2$ |

$\text{7-cube }Q_7 \cong H(7,2)$ | $128$ | $7$ |

$\text{Folded 8-cube}$ | $128$ | $4$ |

$\text{Halved 8-cube}$ | $128$ | $4$ |

$\text{Incidence graph of }AG(2,8) \text{ minus a parallel class}$ | $128$ | $4$ |

$\text{Grassmann graph }J_3(4,2)$ | $130$ | $2$ |

$\text{Halved Leonard graph}$ | $144$ | $2$ |

$\text{Incidence graph of }PG(2,8)$ | $146$ | $3$ |

*Back to:* Graphs by number of vertices

*Last updated: 23 February 2019 *