DistanceRegular.org
$\text{Taylor graph from }J(6,2) \cong \text{ Halved 6-cube}$
Number of vertices:
$32$
Diameter:
$3$
Intersection array:
$\{15,6,1;1,6,15\}$
Spectrum:
$15^1 5^6 (-1)^{15} (-3)^{10}$
Automorphism group:
$2^5:S_6$
Distance-transitive:
$\text{Yes}$
Antipodal
$\text{Downloads}$
$\text{Adjacency matrix}$
$\text{Adjacency matrix in GAP format}$
$\text{Adjacency matrix in CSV format}$
$\text{Graph in GRAPE format}$
$\text{Links}$
$\text{Wikipedia: Halved cube graph}$
$\text{Wolfram: Halved cube graph}$
$\text{Wolfram: Taylor graph}$
$\text{Andries Brouwer: Johnson graph}$
$\text{Wikipedia: Johnson graph}$
$\text{Wolfram: Johnson graph}$
Back to:
A-Z index
•
Graphs with up to 50 vertices
•
Graphs with diameter 3
•
Taylor Graphs
•
Halved cubes
Last updated: 31 March 2019