## $\text{Suetake graph }\cong\text{ Incidence graph of } \mathrm{STD}_4[12;3]$

There is a unique symmetric transversal design $\mathrm{STD}_4[12;3]$, as shown by C. Suetake (*Designs, Codes and Cryptography* **37** (2005), 293–304). Therefore, we introduce the name "Suetake graph" to refer to its incidence graph.

Number of vertices: | $72$ |

Diameter: | $4$ |

Intersection array: | $\{12,11,8,1;1,4,11,12\}$ |

Spectrum: | $12^1 (2\sqrt{3})^{24} 0^{22} (-2\sqrt{3})^{24} (-12)^1$ |

Automorphism group: | $\text{Has order }2^6\cdot 3^3=1728$ |

Distance-transitive: | $\text{No}$ |

Bipartite, Antipodal |