DistanceRegular.org
$\text{Soicher's } 3^{\text{nd}}\text{ graph}\cong 2^{\text{nd}}\text{subconstituent of Soicher's Second graph}\cong \text{Antipodal 3-cover of Goethals-Seidel graph}$
Number of vertices:
$315$
Diameter:
$4$
Intersection array:
$\{32,27,8,1;1,4,27,32\}$
Spectrum:
$32^1 8^{70} 2^{84} (-4)^{140} (-10)^{20}$
Automorphism group:
$(3 \times PSL(3,4)):2^2$
Distance-transitive:
$\text{No}$
Antipodal
$\text{Downloads}$
$\text{Adjacency matrix}$
$\text{Adjacency matrix in GAP format}$
$\text{Adjacency matrix in CSV format}$
$\text{Graph in GRAPE format}$
References
L.H. Soicher,
Three new distance-regular graphs
, European J. Combin. 14 (1993), 501-505.
Back to:
A-Z index
•
Graphs with more than 200 vertices
•
Graphs with diameter 4
•
Graphs from Golay code and Witt designs
Last updated: 4 April 2019