Number of vertices: | $486$ |

Diameter: | $4$ |

Intersection array: | $\{56,45,16,1;1,8,45,56\}$ |

Spectrum: | $56^1 14^{72} 2^{140} (-4)^{252} (-16)^{21}$ |

Automorphism group: | $3.PSU(4,3):2^2$ |

Distance-transitive: | $\text{Yes}$ |

Antipodal |

- $\text{Adjacency matrix}$
- $\text{Adjacency matrix in GAP format}$
- $\text{Adjacency matrix in CSV format}$
- $\text{Graph in GRAPE format}$

- L.H. Soicher, Three new distance-regular graphs, European J. Combin. 14 (1993), 501-505.
- R.F. Bailey and D.R. Hawtin, On the 486-vertex distance-regular graphs of Koolen--Riebeek and Soicher, preprint, 2019 (arXiv:1908.07104).