DistanceRegular.org
$\text{Koolen-Riebeek graph}$
Number of vertices:
$486$
Diameter:
$4$
Intersection array:
$\{45,44,36,5;1,9,40,45\}$
Spectrum:
$45^1 9^{110} 0^{264} (-9)^{110} (-45)^1$
Automorphism group:
$3^5:(2 \times M_{10})$
Distance-transitive:
$\text{No}$
Bipartite
$\text{Downloads}$
$\text{Adjacency matrix}$
$\text{Adjacency matrix in GAP format}$
$\text{Adjacency matrix in CSV format}$
$\text{Graph in GRAPE format}$
References
A.E. Brouwer, J.H. Koolen and R.J. Riebeek,
A New Distance-Regular Graph Associated to the Mathieu Group $M_{10}$
, J. Algebraic Combin. 8 (1998), 153-156.
R.F. Bailey and D.R. Hawtin,
On the 486-vertex distance-regular graphs of Koolen--Riebeek and Soicher
, preprint, 2019 (arXiv:1908.07104).
Back to:
A-Z index
•
Graphs with more than 200 vertices
•
Graphs with diameter 4
•
Graphs from Golay code and Witt designs
Last updated: 29 August 2019