DistanceRegular.org
$\text{Goethals-Seidel graph} \cong 2^{\text{nd}} \text{subconstituent of } 2^{\text{nd}} \text{subconsituent of McLaughlin graph} $
Number of vertices:
$105$
Diameter:
$2$
Intersection array:
$\{32,27;1,12\}$
Spectrum:
$32^1 2^{84} (-10)^{20}$
Automorphism group:
$Aut(PSL(3,4))\cong PSL(3,4).D_{12}$
Distance-transitive:
$\text{No}$
Primitive
$\text{Downloads}$
$\text{Adjacency matrix}$
$\text{Adjacency matrix in GAP format}$
$\text{Adjacency matrix in CSV format}$
$\text{Graph in GRAPE format}$
Back to:
A-Z index
•
Graphs with 101 to 150 vertices
•
Graphs with diameter 2
Last updated: 23 February 2019