$\text{Goethals-Seidel graph} \cong 2^{\text{nd}} \text{subconstituent of } 2^{\text{nd}} \text{subconsituent of McLaughlin graph} $

Number of vertices:$105$
Diameter:$2$
Intersection array:$\{32,27;1,12\}$
Spectrum:$32^1 2^{84} (-10)^{20}$
Automorphism group:$Aut(PSL(3,4))\cong PSL(3,4).D_{12}$
Distance-transitive:$\text{No}$
Primitive




$\text{Downloads}$

Back to: A-Z indexGraphs with 101 to 150 vertices Graphs with diameter 2
Last updated: 23 February 2019