This graph is the complement of the $U_6(2)$ graph.

Number of vertices: | $672$ |

Diameter: | $2$ |

Intersection array: | $\{495,128;1,360\}$ |

Spectrum: | $495^1 15^{231} (-9)^{440}$ |

Automorphism group: | $P{\Gamma}L(6,2) \cong U_6(2):S_3$ |

Distance-transitive: | $\text{Yes}$ |

Primitive |

- $\text{Adjacency matrix}$
- $\text{Adjacency matrix in GAP format}$
- $\text{Adjacency matrix in CSV format}$
- $\text{Graph in GRAPE format}$

- L.H Soicher, Yet another distance-regular graph related to Golay code, Electronic J. Combin. 2 (1995), N1, 4pp.