$\text{Biggs-Smith graph}$

Number of vertices:$102$
Diameter:$7$
Intersection array:$\{3,2,2,2,1,1,1;1,1,1,1,1,1,3\}$
Spectrum:$3^1 \left(\frac{1+\sqrt{17}}{2}\right)^9 2^{18} (\theta_1)^{16} 0^{17} (\theta_2)^{16} \left(\frac{1-\sqrt{17}}{2}\right)^9 (\theta_3)^{16}$
 $\theta_1, \theta_2, \text{and }\theta_3 \text{ are the roots of }\theta^3+3\theta^2-3=0\text{, which have approximate values }0.879, -1.347, \text{ and }-2.532.$
Automorphism group:$PSL(2,17)$
Distance-transitive:$\text{Yes}$
Primitive


Biggs-Smith graph

$\text{Downloads}$

$\text{Links}$

Back to: A-Z indexGraphs with 101-150 verticesGraphs with diameter 7Graphs with valency 3
Last updated: 19 January 2017